
B2:	MongoDB	Commands	 1	

COM644	Full-Stack	Web	and	App	Development	
	

Practical	B2:	MongoDB	Commands	
	
	

Aims	
• To	introduce	the	find()	method	to	search	a	MongoDB	collections	
• To	illustrate	sorting	of	data	returned	by	a	find()	
• To	demonstrate	the	update()	method	for	modifying	documents	
• To	demonstrate	the	remove()	method	for	removing	documents	from	

collections	
• To	demonstrate	the	drop()	method	for	deleting	collections	
• To	compare	BSON	and	JSON	as	alternative	notations	for	porting	of	data	

between	databases	
• To	introduce	export	and	import	of	BSON	data	
• To	introduce	export	and	import	of	JSON	data	

	
	

Contents	
B2.1	BASIC	MONGODB	COMMANDS	..	2	

B2.1.1	BASIC	SEARCHING	..	2	
B2.1.2	SORTING	QUERY	RESULTS	..	4	
B2.1.3	UPDATING	DOCUMENTS	...	4	
B2.1.4	DELETING	DOCUMENTS	AND	COLLECTIONS	...	5	

B2.2	EXPORTING	AND	IMPORTING	DATA	..	6	
B2.2.1	EXPORTING	AND	IMPORTING	BSON	DATA	...	7	
B2.2.2	EXPORTING	AND	IMPORTING	JSON	DATA	..	9	

	
	
	
	 	

B2:	MongoDB	Commands	 2	

B2.1	Basic	MongoDB	Commands		
	
In	the	previous	practical,	we	created	a	simple	document	store	database	in	MongoDB	and	
populated	it	with	a	small	collection	of	documents	as	illustrated	in	figure	B2.1	below.	
	
	
	

	
	

Figure	B2.1	Sample	database	in	MongoDB	
	
	
In	this	session,	we	will	continue	to	work	with	this	database	in	order	to	illustrate	the	main	
retrieval	and	update	operations.	
	
	
B2.1.1	Basic	searching	
	
We	have	already	seen	how	the	find()	method	can	be	used	to	retrieve	the	documents	
within	a	collection.		Where	we	want	to	retrieve	a	subset	of	the	documents,	we	pass	a	
Javascript	object	to	find()	which	contains	the	fields	and	values	that	we	want	to	match.	
	
For	example,	to	return	the	document	where	the	name	field	matches	the	value	“Express”,	we	
can	use	the	command	
	

>	db.collectionB1.find	({	“name”	:	“Express”	})	

B2:	MongoDB	Commands	 3	

	
	

Figure	B2.2	The	basic	find()	method	
	
	
If	we	want	to	match	multiple	values,	we	simply	add	them	to	the	object	passed	as	a	
parameter	to	find().		For	example,	to	retrieve	documents	where	the	name	field	is	
“MongoDB”	and	the	role	field	is	“Database”,	we	would	issue	the	command	
	

>	db.collectionB1.find	({	“name”	:	“Mongo”,	“role”	:	“Database”	})	
	
	
By	default,	the	find()	method	returns	whole	documents	–	i.e.	the	object	returned	
contains	every	field	in	matching	documents.		Where	we	only	want	specific	values	to	be	
retrieved,	we	specify	those	fields	in	a	second	parameter	(known	in	MongoDB	terminology	as	
a	projection)	to	find()	as	shown	in	the	following	command	which	requests	that	only	the	
role	values	should	be	returned.	
	

>	db.collectionB1.find	({	“name”	:	“Express”	},	{	“role”	:	true	})	
	
	
Note	that	by	default,	the	_id	field	is	ALWAYS	returned	–	even	when	we	do	not	specify	it.		If	
we	want	the	_id	to	be	excluded,	we	need	to	explicitly	state	that	in	the	command	as	shown	
in	the	following	
	

>	db.collectionB1.find	({“name”	:	“Express”},	{	“role”	:	true,	“_id”	:	false	})	
	
	
If	we	want	to	return	specific	fields	from	all	documents,	we	can	simply	leave	the	first	
parameter	of	find()	as	an	empty	object.	
	

>	db.collectionB1.find	({	},	{	“name”	:	true,	“_id”	:	false	})	
	
	

B2:	MongoDB	Commands	 4	

B2.1.2	Sorting	query	results	
	
We	can	sort	the	results	of	MongoDB	queries	by	chaining	the	sort()	method	to	the	results	
of	a	find()	operation.		We	specify	the	field	to	sort	by	and	the	direction	of	sort	by	providing	
the	information	as	a	Javascript	object,	passed	as	a	parameter	to	sort().		For	example,	to	
return	the	collection	of	name	values	sorted	in	ascending	order,	we	would	use	the	command	
	

>	db.collectionB1.find	({	},	{	“name”	:	true,	“_id”	:	false	}).sort({	“name”	:	1	})	
	
	
To	perform	the	sort	in	descending	order,	we	change	the	sort	key	value	from	1	to	-1.		
	

>	db.collectionB1.find	({	},	{	“name”	:	true,	“_id”	:	false	}).sort({	“name”	:	-1	})	
	
	

	
	

Figure	B2.3	Searching	and	sorting	
	
	
	
B2.1.3	Updating	documents	
	
Updating	a	document	is	a	two-stage	command	that	consists	of	a	find	to	locate	the	
document(s)	to	be	modified	and	a	set	to	write	the	new	values.		These	are	passed	as	two	
parameters	to	the	update()	method	as	illustrated	in	the	following	command.		Note	the	
use	of	the	special	MongoDB	command	$set	in	the	second	parameter.	
	

>	db.collectionB1.update	({	“name”	:	“Angular”	}	,		
																																																															{	$set	:	{	“name”	:	“AngularJS”}		}	
)	
	

B2:	MongoDB	Commands	 5	

This	command	locates	all	documents	with	a	name	value	of	“Angular”	and	updates	those	
name	fields	to	the	new	value	“AngularJS”.	
	
By	default,	the	update()	method	will	only	update	a	single	document	–	i.e.	the	first	
document	that	matches	the	search	term.		If	we	want	to	update	multiple	documents,	we	
need	to	pass	an	extra	options	parameter	to	the	update()	method.		We	can	illustrate	this	in	
our	database	by	the	following	command	that	adds	a	new	field	to	every	document	with	a	key	
of	“language”	and	a	value	of	“Javascript”	
	

>	db.collectionB1.update	({		}	,		
																																																															{	$set	:	{	“language”	:	“Javascript”}		},	

																																																		{	multi	:	true	}	
)	
	
	
	

	
	

Figure	B2.4	Updating	a	collection	
	

	
	
B2.1.4	Deleting	documents	and	collections	
	
In	order	to	delete	documents	from	a	collection,	MongoDB	provides	a	remove()	method.		
This	method	takes	a	Javascript	object	as	a	parameter	that	specifies	the	documents	to	be	
deleted.		For	example,	we	could	remove	the	“Angular”	document	from	our	example	
database	by	the	command	
	

>	db.collectionB1.remove	({	“name”	:	“AngularJS”	})	
	
Note	that	the	format	of	the	parameter	is	exactly	that	already	seen	in	the	find()	method	–	
hence	an	empty	object	will	match	ALL	documents	and	remove	everything	from	the	
collection.	
	

>	db.collectionB1.remove	({	})	

B2:	MongoDB	Commands	 6	

	
	

Figure	B2.5	Removing	a	document	from	a	collection	
	
	
	
Deleting	an	entire	collection	is	performed	by	the	drop()	method	as	illustrated	by	the	
command	
	

>	db.collectionB1.drop	()	
	
	
	

	
	

Figure	B2.6	Dropping	a	collection	from	a	database	
	
	

B2.2	Exporting	and	Importing	Data		
	
A	common	requirement	in	database-driven	applications	is	the	need	to	be	able	to	move	data	
in	and	out	of	the	database.		This	might	be	to	create	backups	or	to	populate	an	application	
with	data	before	launch.	
	

B2:	MongoDB	Commands	 7	

Before	exploring	the	options	for	data	export	and	import,	we	will	need	to	re-create	the	
collection	that	we	dropped	in	the	previous	example.	
	
Copy	the	statement	from	the	file	addCollection.txt	provided	in	the	Practical	Files	and	paste	it	
to	the	Mongo	command	prompt	as	shown	in	Figure	B2.7	below.	
	
	

	
	

Figure	B2.7	Re-create	the	collection	
	
	
B2.2.1	Exporting	and	Importing	BSON	data	
	
Mongo	provides	options	for	export	and	import	as	both	BSON	(Binary	JSON)	and	standard	
JSON.		The	option	we	choose	to	use	depends	on	our	requirement	–	if	we	are	exporting	the	
data	for	archive	purposes,	we	will	most	likely	use	the	binary	format,	while	if	we	will	want	to	
read	the	data	ourselves,	then	the	JSON	option	is	the	most	appropriate	choice.	
	
The	Mongo	tool	for	exporting	database	contents	is	mongodump	which	is	run	from	the	
command	prompt	(not	the	MongoDB	shell)	as	
	

U:\B2>	mongodump	--db	databaseB1	
	
	
where	the	name	of	the	database	is	passed	as	the	value	of	the	--db	flag.			
	
The	mongodump	tool	saves	the	exported	data	in	a	folder	called	dump	within	the	current	
working	directory.		If	you	explore	the	dump	folder	you	should	find	another	sub-folder	called	
databaseB1	(the	name	of	our	database)	and	inside	this	folder	you	should	see	the	BSON	files	
that	have	been	created.	
	
	

B2:	MongoDB	Commands	 8	

	
	

Figure	B2.8	Using	mongodump	
		
	
	
The	opposite	action	to	mongodump	is	mongorestore,	which	allows	us	to	create	a	database	
by	importing	a	previously	dumped	data	set.		The	mongorestore	tool	is	run	as		
	

U:\B2>	mongorestore	--db	databaseB2	dump\databaseB1	
	
which	will	create	a	new	database	called	databaseB2	by	importing	the	data	from	our	
previous	mongodump	action.	
	
Having	restored	the	database,	we	can	show	that	the	operation	has	worked	by	entering	the	
mongo	shell,	specify	that	as	want	to	use	the	new	database	and	display	the	data.		Figure	B2.9	
illustrates	this	process.	
	
Note	that	mongorestore	only	performs	insert	operations	–	it	does	not	do	updates.		If	we	are	
restoring	to	a	database	that	already	has	content,	only	documents	with	_id	values	that	are	
NOT	already	present	will	be	added.		It	will	not	replace	current	values	with	new	data	from	
the	file	to	be	restored.	
	
	
	

B2:	MongoDB	Commands	 9	

	
	

Figure	B2.9	Using	mongorestore	
	
	
B2.2.2	Exporting	and	Importing	JSON	data	
	
When	we	export	JSON	from	a	MongoDB	database,	we	export	a	JSON	representation	of	the	
data.		We	can	see	this	by	using	the	mongoexport	tool	and	examining	the	JSON	that	is	
returned.	
	
The	mongoexport	tool	is	initiated	as	
	

U:\B2>	mongoexport	--db	databaseB1	--collection	collectionB1	
	
Note	that	we	need	to	specify	the	collection	to	be	exported	as	well	as	the	database	and	that,	
as	illustrated	in	Figure	B2.10,	the	default	behavior	is	to	output	the	JSON	data	to	the	console.	
	
	

	
	

Figure	B2.10	Using	mongoexport	

B2:	MongoDB	Commands	 10	

In	order	to	save	the	data	to	a	file	we	need	to	specify	an	additional	flag	to	the	mongoexport	
command	as	follows	
	

U:\B2>	mongoexport	--db	databaseB1	--collection	collectionB1	--out	data.json	
	
	
If	we	examine	the	data	file	generated,	we	can	see	that	it	is	still	not	quite	usable	as	it	does	
not	represent	a	valid	JSON	structure	as	each	document	in	the	collection	is	represented	as	a	
separate	JSON	object,	but	it	has	failed	to	present	the	objects	as	an	array.	
	
Fortunately,	there	are	another	pair	of	flags	we	can	specify,	that	will	structure	the	data	as	an	
array	(--jsonArray)	and	format	it	in	a	more	human-readable	form	(--pretty)	
	
	

U:\B2>	mongoexport	--db	databaseB1	--collection	collectionB1	--out	data.json		
																											--jsonArray	--pretty	
	
Now,	if	we	examine	the	JSON	file	generated,	we	see	that	is	has	a	more	useful	appearance	
	
	

[{
 "_id": {
 "$oid": "5898e88e6f3eb4a7babc4682"
 },
 "name": "MongoDB",
 "role": "database"
},
…
{
 "_id": {
 "$oid": "5898e88e6f3eb4a7babc4685"
 },
 "name": "Node.JS",
 "role": "Server platform"
}]

	
	
Now,	we	can	see	the	JSON	representation	of	the	data,	and	in	particular	how	it	treats	the	
_id	value.		When	we	retrieved	documents	earlier	using	the	find()	method,	we	saw	how	
the	_id	was	represented	as	an	ObjectId()	value.		However,	as	this	is	not	valid	JSON,	
mongoexport	creates	a	valid	representation	by	defining	_id	as	a	Javascript	object,	with	the	
unique	identifier	as	the	value	of	an	$oid	property.	
	
The	opposite	command	to	mongoexport	is	mongoimport,	which	allows	us	to	create	a	
database	and	import	a	collection	from	a	JSON	file	that	has	previously	been	generated	by	
mongoexport.	
	
The	format	of	the	mongoimport	command	is	
	

B2:	MongoDB	Commands	 11	

U:\B2>	mongoimport	--db	databaseB3	--collection	collectionB1	--jsonArray		
																										data.json	

	
	

where	we	specify	the	database	to	be	used	or	created	(databaseB3),	the	collection	to	be	
populated	with	the	database	(collectionB1),	that	the	file	is	a	JSON	array	(--jsonArray)	and	
finally	the	JSON	file	containing	the	data	(data.json).	
	
Figure	B2.11	illustrates	the	mongoimport	process	and	demonstrates	that	the	database	
called	databaseB3	has	been	created	and	populated	with	the	data.	
	
	
	

	
	

Figure	B2.11	Using	mongoimport	
	
	
	

